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has a zero intercept (Figure 2). Addition of the free-radical 
inhibitor, 3-/er?-butyl-4-hydroxy-5-methylphenyl sulfide, had 
no effect on the rate of the reaction. Thus, the rate law, 
-d[Ni(N02)2(DPPE)]/d/ = £2[Ni(N02)2(DPPE)][CO], 
is applicable with a value of 2.1 X 10_1 dm3 mol-1 s_ l for ^2 
at 20 0C. 

It was concluded that this reaction is associative, which is 
typical for square planar complexes of nickel(II).'9 The pro­
posed mechanism for this reaction, based on these results and 
other chemical properties of square planar NiX2L2 complexes 
discussed below, is outlined in Scheme I. In this mechanism, 
the rate-determining step is the formation of the five-coordi­
nate monocarbonyl complex, Ni(N02)2(CO)(DPPE) (reac­
tion 2), followed by the transfer of an oxygen atom to CO 
(reaction 3), and terminated by the loss of CO2 (reaction 4). 
The isolation and characterization of NiBr2(CO)(PMe3)2 
reported recently by Saint-JoIy et al.10 show that square planar 
nickel complexes of the type NiX2L2 will indeed add one CO 
molecule. However, in the absence of an oxidizing NO2 ligand, 
no further reaction of CO takes place and the five-coordinate 
monocarbonyl complex can then be isolated. When the NO2 
ligand is present, an intramolecular attack on the CO ligand 
analogous to that found for the reaction between the isoelec-
tronic NO+ ligand and the nitro group of m-[Fe(NO)-
(N02)(S2CNMe2)2] which we reported earlier1 can take 
place. The oxygen atom transfer from NO2 to CO would then 
produce an unstable intermediate or transition state similar 
to the C-bonded CO2 complex of Co(I), whose structure was 
recently reported.1' 

An alternative mechanism in which CO attacks the oxygen 
atom of the coordinated NO2 group is also consistent with the 
observed rate law.12 However, this mechanism provides a less 
than satisfactory explanation of the lack of reaction between 
NO 2

- and CO in the absence of transition metals and of the 
dependence of the rate of reaction 1 on L.13 In contrast, 
Scheme I requires the rate of formation of Ni(N02)2-
(CO)L2 to be dependent upon the electronic and steric re­
quirements imposed by L.'4 Experiments in progress are de­
signed to detect the five-coordinate intermediate required by 
Scheme I. It is also worth noting that these nickel complexes 
are potential homogeneous catalysts for the reaction between 
O2 and CO at subatmospheric pressure, since we have found 
that O2 will oxidize Ni(NO)(NO2)(DPPE) to Ni(N02)2-
(DPPE).15 

Another oxidation of carbon monoxide catalyzed by tran­
sition metals (reaction 5) has been extensively studied:16 

2NO + CO — CO7 + NSO (5) 

Although reaction 5 is complicated and consists of several 
steps, the transfer of at least one oxygen atom is required. One 
of the possible mechanisms proposed for this reaction involves 
the transfer of an oxygen atom from a coordinated nitro group 
as one of the key reactions.'7 The present study shows that the 
nitro group can transfer an oxygen atom directly to carbon 
monoxide, a step which may also play a role in the catalysis of 
the CO/NO reaction. 

Note Added in Proof. A recent study using l80-labeled 

trans- [Ni(N02)2(PEt3)2] has shown that -NO2 is the oxygen 
source for CO2 production. The observed 18O enrichment of 
product CO2 is consistent with Scheme I, and a similar 
mechanism was independently proposed by Doughty et al.18 
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Total Synthesis of cM-Aplysistatin 

Sir: 

Aplysistatin (1) is a brominated sesquiterpene recently ex­
tracted from the South Pacific Ocean sea hare, Aplysia ang-
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(p* -^Jp* 

(p(j^COOM.^y^COOM A QfM-COOM. 

asi.' The compound possesses both a structurally unique het­
erocyclic skeleton and significant inhibitory activity against 
murine lymphocytic leukemia P-388 progression. This com­
munication describes the first total synthesis of the mole­
cule. 

Our synthetic strategy was guided by three early experi­
mental observations, (i) Mercuric trifluoroacetate mediated 
brominative cyclization of a variety of diene alcohols of type 
2 (Hg(TFA)2, CH3NO2; saturated KBr, H2O; Br2, LiBr, O2, 
py) led to the bromoperhydro[l]benzopyrans 3 in 25-45% 
overall yield.2 (ii) A diastereomeric mixture of alcohols 43'4 

was successfully cyclized by mercuric ion to the perhydro [I]-
benzoxepins 54 in somewhat lower yield (Hg(TFA)2, 
CH3NO2; NaBH4, NaOH, H2O) thus confirming that 
seven-membered cyclic ethers could be prepared in this fashion. 

Scheme Ia 

qO o,b 

7 X - O T t 

8 X • CH(SPh)COOMt 

COOMt 

14 R-H, R'»CH2OBiI CH2OBzI SPh COOMt 

_R 

IO H 

U CH2OBzI H SPh COOMt 

12 H CH9OBzI COOMt SPh 

13 CH2OBzI H COOMt SPh 

17 i R" 
18 R. 

" (a) PhSCH2CO2CH3, (LDA, THF, -78 0C, 40 min) added to 
7 (Me2SO, room temperature, 18 h); (b) 8 (LDA (1.4 equiv), THF, 
HMPA (2 equiv), -78 0C, 40 min) added to ZnCl2 (1.4 equiv) (THF, 
O 0C, 5 min), then add PhCH,OCH2CHO (1.8 equiv) (THF, O 0C, 
2 min, N H4CI quench); (c) Hg(TFA)2 (1.1 equiv) (CH3NO2, room 
temperature, ~1 h), saturated KBr (excess) (H2O, room temperature, 
16 h), Br2 (1.5 equiv) (LiBr (2 equiv), O2, py, room temperature 3 h); 
(d) m-CPBA (1 equiv) (CDCl3, O

 0C), A (60-80 0C, CDCl3, 15-30 
min); (e) Ph3C

+BF4
- (3 equiv) (CDCl3, room temperature, 16 h). 

(iii) One of the stereoisomers of 5 was selectively oxidized to 
the A7-8 olefin 645 by a-phenylselenylation and oxidative 
elimination.16 In light of these experiments, diene 9 was 
identified as an ideal acyclic precursor to test the validity of 
this general approach to aplysistatin (1) since positions 8, 9, 
11, and 125 are appropriately oxidized. 

Preparation of 9 (see Scheme I) commenced with the al-
kylation of the enolate anion from methyl 2-phenylthioacetate6 

with thep-toluenesulfonate ester of homogeraniol (7)7 which 
gave ester 8 (64%).4 Aldol condensation of the enolate anion 
derived from 8 with 2-benzyloxyacetaldehyde8 required the 
presence of anhydrous zinc chloride,9 presumably to drive the 
equilibrium to favor the alkoxide precursors of 9 (84%, 2:1 ratio 
of separable diastereomers).4'10 

With 9 in hand we turned our attention to the crucial 
brominative cyclization. Each diastereomer of 9 led to a 1:1 
mixture of diastereomeric bromoperhydro[l]benzoxepins 10 
(11%) and 13 (11%) or 11 (11%) and 12 (11%).4'10 The major 
and only other identifiable product in this reaction was the 
partially cyclized diol 194-10 (1:1 ratio of C-145 epimers in 30% 
yield from the major diastereomer of 9). This structural as­
signment was supported by conversion of the pair of epimers 
19 into the separable monoacetates 20.4'10 

19 R-H 

20 R- Ac 

21 

Initial attempts at reductive removal of the benzyl ether in 
preparation for lactonization of compounds 10-13 (H2, 10% 
Pd/C, EtOH; H2, 10% Pd/C, BF3-OEt2, MeOH11) or of the 
corresponding sulfoxides were unsuccessful. Furthermore, 
olefin 14,4 arising from pyrolysis (80 0C) of the sulfoxides 
derived from 10 and 12 was selectively saturated to 164 rather 
than deprotected upon catalytic reduction (H2, 10% Pd/C, 
EtOH). However, oxidative debenzylation of 10 or 12 with 
triphenylcarbenium tetrafluoroborate12 (Ph3C+BF4

- (4 equiv) 
CDCl3, room temperature, 22 h) not only induced loss of the 
benzyl ether moiety but proceeded with concomitant lactoni­
zation, presumably via direct nucleophilic participation of the 
adjacent methoxycarbonyl group.13 The a-phenylthiolactone 
214'10 was the sole product originating from 10 or 12 that could 
be observed by direct N MR analysis of the reaction mixture. 
Oxidative elimination of 21 then afforded the first synthetic 
sample of aplysistatin (1). '4 

In practice it was more expedient to first convert each of the 
diastereomeric sulfides 10-13 into the epimeric unsaturated 
benzyl ethers 14 (from 10 and 12) and 15 (from 11 and 13) by 
oxidative elimination (~70%). In turn, each of these epimers 
obligingly suffered simultaneous debenzylation and lactoni­
zation (see 17) under the influence of trityl fluoroborate to 
provide both aplysistatin (1, 51% from 14)14 and 12-epiap-
lysistatin (18, 60% from 15).4-15'17 
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Oxidation of Ruthenium Coordinated Alcohols by 
Molecular Oxygen to Ketones and Hydrogen Peroxide 

Sir: 

Selective oxidations of organic substrates mediated by metal 
complexes which would allow the formation of H2O2 instead 
of water (the usual final product of oxygen reduction) would 
be of great importance. This concept is demonstrated in the 
work described herein using ruthenium(ll) complexes. Pre­
viously, ruthenium(II) complexes have been utilized to facil­
itate oxidation of coordinated imines and primary or secondary 
amines by molecular oxygen.'"6 However, the mechanism of 
these oxidations and the fate of the molecular oxygen have only 
been speculated upon. We have observed that Ru(II)-alcohol 
complexes can be oxidized by O2 to H2O2 and the corre­
sponding Ru(IV)-alcohol complexes which then undergo 
metal-ligand redox leading to a Ru(II)-ketone complex (eq 
1). Hydrogen peroxide has been identified as a reduction 
product of molecular oxygen. 

H H 

- ^ (D 

Our initial study has centered on the oxidation of 2-(T-
hydroxyethyl)pyridine coordinated to Ru(Il) as a bidentate 
ligand (eq 1). The complex 1 is prepared by substitution of the 
aquo ligands in d5-(NH3)4Ru"(OH2)2 by 2-(l'-hydroxy-
ethyl)pyridine in deoxygenated aqueous solution at 25 °C and 

pH 5. In analogy to other pyridine-Ru(II) complexes the ab­
sorption of 1 at 4100 A (e 3900) confirms coordination of the 
pyridine ring. Coordination of the alcohol group can be verified 
by the observed chemical shift in the ' H NMR from <5CH3 1.51 
in free 2-(l'-hydroxyethyl)pyridine to <5CH3 1-54 in (NH3)5-
Ru"[2-(r-hydroxyethyl)pyridine]7 where only the pyridine 
nitrogen is coordinated, to <5CH3 1 -63 in 1. The oxidation of the 
hydroxyethyl group in 1 to the acetyl group in 2 has been 
achieved via the Ru(IV) analogue of 1 which was generated 
by two independent routes as discussed below. 

Disproportionation of Ru(IH) Complex. Rudd and Taube 
have shown that (NH3)5Run,py (£°RU(III)/RU(H) = + 0.30 V) 
disproportionates in solutions of pH >8 to (NH3)SRu11Py and 
the Ru(IV) analogue.8 To determine if Ru(IV) could function 
as an oxidant, we performed an analogous disproportionation 
reaction with 3 (eq 2). Complex 3 was prepared in deoxygen-

JHIi^+ J N H W + . ^ t 2 ) 

^ O - C ^ C H , O-C-CH, 

'k 

1 -Aa-XNH3) 4RÛ  + - N g > . 

+ -£) ( N H J ) 4 R U 

ated acidic solution by oxidation of 1 with AgTFA. The pale 
yellow solution obtained after filtration of Ag0 is stable in­
definitely toward conversion into 2. Upon raising the pH above 
8,3 disproportionates to 1 and 4. The deep blue color charac­
teristic of 2 (Amax 6220 A)6 forms slowly, reaching a value of 
72% of theoretical after 24 h at pH 11. Concurrently, forma­
tion of 1 can be verified by its absorption at 4100 A. Similarly, 
the NMR of the reaction solution shows the presence of 1 and 
2 in roughly similar amounts as observed in the visible 
spectra.9 

The chemical shift in 2,10 r5CH3 2.92, relative to that in free 
2-acetylpyridine, <5CH3 2.72, reveals that the ketone group in 
2 is coordinated. 

The disproportionation of (NH3)SRu111Py can be reversed 
by lowering the pH.8 However, disproportionation of 3 can only 
be partially reversed owing to the formation of 2 from 4 pro­
duced in the disproportionation. For example, in a solution of 
3, [3] = 3.08 XlO-2M at pH 10, 30% 2 is produced after 1 h. 
Upon lowering the pH at this time, the visible spectrum due 
to 2 is unchanged and the presence of 1 is apparent. These facts 
demand that 3 is only partially recovered and indicate that 4 
has undergone an irreversible reaction, the ligand oxidation 
indicated in eq 2. Thus it has been demonstrated that Ru(IV) 
can be efficiently generated by Ru(III) disproportionation and 
that Ru(IV) can function as an oxidant for coordinated alco­
hols. 

Reaction of 1 with O2. The product profile obtained in re­
actions of 1 with O2 is pH dependent (Table I). At pH 1 (expt 
1) 5% 2 is produced in 2 h, an amount which does not increase 
with time. The other product of the reaction is 3 ," which is 
formed in analogy to the reaction of many other ammine-
Ru(II) complexes with O2.

12 

Reaction of 1 with O2 at pH >7, however, is much different. 
For example, at pH 10, in an initial rapid reaction 1 is con­
verted into 3 or 4. This result alone is in contrast to the reac­
tivity of the similar complex, (NH3)sRu"py, which is com­
pletely oxidized to its Ru(III) analogue in ~30 min13 at pH 
1 but only extremely slowly (hours) at pH 10. We attribute this 
difference to deprotonation of the hydroxy group in 3 or 4 
leading to formation of Ru(III) or Ru(IV) alkoxide. This 
alkoxide formation should stabilize these higher oxidation 
states and lower the £^DRU(III)/RU(H) of 3 below that of 
(NH3)5Rumpy (£0Ru(iii)/RU(]i) = 0.30 V).'4 A lower E° 
should facilitate a faster reaction of 1 with O2.'5 A similar 
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